On the Asymptotic Behavior of Variance of Plrs Decompositions

نویسندگان

  • STEVEN J. MILLER
  • HUANZHONG XU
چکیده

A positive linear recurrence sequence is of the form Hn+1 = c1Hn + · · · + cLHn+1−L with each ci ≥ 0 and c1cL > 0, with appropriately chosen initial conditions. There is a notion of a legal decomposition (roughly, given a sum of terms in the sequence we cannot use the recurrence relation to reduce it) such that every positive integer has a unique legal decomposition using terms in the sequence; this generalizes the Zeckendorf decomposition, which states any positive integer can be written uniquely as a sum of non-adjacent Fibonacci numbers. Previous work proved not only that a decomposition exists, but that the number of summands Kn(m) in legal decompositions of m ∈ [Hn, Hn+1) converges to a Gaussian. Using partial fractions and generating functions it is easy to show the mean and variance grow linearly in n: an + b + o(1) and Cn + d + o(1), respectively; the difficulty is proving a and C are positive. Previous approaches relied on delicate analysis of polynomials related to the generating functions and characteristic polynomials, and is algebraically cumbersome. We introduce new, elementary techniques that bypass these issues. The key insight is to use induction and bootstrap bounds through conditional probability expansions to show the variance is unbounded, and hence C > 0 (the mean is handled easily through a simple counting argument).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic algorithm for computing the sample variance of interval data

The problem of the sample variance computation for epistemic inter-val-valued data is, in general, NP-hard. Therefore, known efficient algorithms for computing variance require strong restrictions on admissible intervals like the no-subset property or heavy limitations on the number of possible intersections between intervals. A new asymptotic algorithm for computing the upper bound of the samp...

متن کامل

Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables

Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...

متن کامل

Asymptotic behavior of a system of two difference equations of exponential form

In this paper, we study the boundedness and persistence of the solutions, the global stability of the unique positive equilibrium point and the rate of convergence of a solution that converges to the equilibrium $E=(bar{x}, bar{y})$ of the system of two difference equations of exponential form: begin{equation*} x_{n+1}=dfrac{a+e^{-(bx_n+cy_n)}}{d+bx_n+cy_n}, y_{n+1}=dfrac{a+e^{-(by_n+cx_n)}}{d+...

متن کامل

Permanency and Asymptotic Behavior of The Generalized Lotka-Volterra Food Chain System

In the present paper a generalized Lotka-Volterra food chain system has been studied and also its dynamic behavior such as locally asymptotic stability has been analyzed in case of existing interspecies competition. Furthermore, it has been shown that the said system is permanent (in the sense of boundedness and uniformly persistent). Finally, it is proved that the nontrivial equilibrium point...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017